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Abstract

The theoretical analysis of filmwise condensation outside a finite-size horizontal flat surface embedded in a porous
medium filled with a dry saturated vapor has been solved by a boundary layer treatment. The Newton—-Raphson scheme
was employed to solve the finite-size horizontal flat plate in porous medium. Results turns out that the average Nusselt
number for condensation heat transfer is expressed in terms of Darcy number, Jakob number, film liquid Prandtl
number, Darcy-modified Rayleigh number and the parameter of suction, as well as are given for the condensate layer

thickness profiles.
© 2003 Published by Elsevier Ltd.
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1. Introduction

The vapor transfer with condensation in porous
medium is of practical importance in various fields of
application. For examples, these are the design of
evaporative condensers, enhanced recovery of petroleum
resources, civil engineering, functional clothing design,
geothermal reservoirs, and other industrial applications.

Since the pioneering investigator Nusselt [1] in 1916,
the problem of vapor filmwise condensation on vertical
wall has been subjected to four major assumptions. The
Nusselt problem has been improved the above assump-
tions over the years by Rohsenow [2], Sparrow and
Gregg [3], Churchill [4], Chen [5], and Koh et al. [6,7],
etc. Denny and Mills [8] based on the Nusselt assump-
tions have been stretched to include the effects of (i)
forced vapor flow, (ii) variable wall temperatures, and
(iii) variable fluid properties.
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Jain and Bankoff [9] used a double power perturba-
tion method to get an exact solution of the Nusselt
problem with constant suction velocity. Their results
showed that the increase in heat transfer from suction
can be effected laminar film condensation on a porous
vertical wall. Char et al. [10] used the Darcy—Brinkman—
Forchheimer (DBF model) to treat the condensate field
in a porous medium and found the local heat transfer
rate increased with a decrease in the Jakob number, the
Peclet number, and the inertial parameter or an in-
creased in the conjugate heat transfer parameter. Popov
[11] inquired into laminar film condensation on a hori-
zontal flat surface in 1951. His experimental results
showed considerable scatter, possibly owing to non-
condensable gases. Gerstmann and Griffith [12] studied
condensation on the underside of horizontal and in-
clined surface both theoretically and experimentally.
Leppert and Nimmo [13], and Shigechi et al. [14] in-
vestigated laminar condensation on the upper side of a
horizontal flat plate. Yang and Chen [15] used the
concept of hydraulics of open channel flow to search the
boundary condition of the plate edge. Recently, Yang
and coworkers [16,17] considered condensation on a
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Nomenclature
C constant X axial coordinate
Co specific heat at constant pressure Y function defined in Eq. (30) or (41)
Da the Darcy number defined in Eq. (20) y transverse coordinate
g acceleration of graV}ty Greek symbols
h heat transfer coefficient o e .
. o thermal diffusivity of a porous medium
e latent heat of condensation 0 local condensate layer thickness
Ja the Jakob number defined in Eq. (20) . Y .
. . € porosity of a porous medium
k effective thermal conductivity . X .
R o . n dimensionless condensate layer thickness
K intrinsic permeability of a porous medium
o . defined by 4/d,
L finite-size horizontal flat surface length .
. . A parameter is defied as A = hg + 0.5C,AT
m condensate mass flow rate defined in Eq. . . .
(15) u effecFlve viscosity of condensate layer
Nu Nusselt number defined in Eq. (33) p density of condensate layer
P pressure Superscripts
Pr the Prandtl number defined in Eq. (20) * indicates dimensionless quantity
q heat flux defined in Eq. (31) - indicates average quantity
Ra the Darcy-modified Rayleigh number de- .
. Subscripts
fined in Eq. (20) .
. 0 quantity at the flat surface center
Re,, the Reynolds number at surface defined in .
Eq. (20) c quantity at the flat surface edge
4 . . ef effective properties due to a porous medium
S, the suction parameter at surface defined in .
Eq. (20) L quantity at the flat surface edge
4 n iteration
T temperature . .
. . r relative quantity
AT saturation temperature minus surface tem- .
] saturated properties
perature . .
. o S w finite-size horizontal flat surface
u the Darcian velocity in x-direction . local properties
v the Darcian velocity in y-direction prop
Uy suction velocity on the plate surface
finite-size horizontal wavy disk and plate facing upward 2. Analysis

with previous concept [15]. The concept, which is from
Bakhmeteff’s [18] writings, is the minimum mechanical
energy with respect to the boundary layer thickness at
the edge of the plate.

In the present study, the laminar film condensation
on a finite-size, horizontal, permeable, flat plate in a
porous medium filled with dry saturated vapor was in-
vestigated. Owing to the larger porosities adjacent to
solid surface result in reduction of the resistance to the
flow; the non-uniformities near the boundary will pay an
importance role in the condensate flow at the plate
surface. Hence, we consider uniformities of a porous
medium that lead to the Darcy model for the condensate
flow in a porous medium. The dimensionless average
Nusselt number and the condensate layer thickness on
the plate surface are examined at different values of the
governing parameters those are the Darcy number Da
(i.e. permeability), the Jakob number Ja (i.e. thermal
resistance across condensate layer), the Prandtl number
Pr (i.e. physical properties of film liquid), the Rayleigh
number Ra (i.e. laminar flow) and the suction parameter
Sy

A schematic diagram of the physical model and co-
ordinate system is shown in Fig. 1. A porous horizontal
clean flat surface is maintained at constant temperature
T,,. The gas is a pure quiescent vapor at a uniform
temperature 7;. When the temperature of permeable
plate surface is lower than the saturation temperature 7;

_<

Static saturated vapor

in a porous medium %

Condensate Layer

2L

Fig. 1. Physical model and coordinate system.
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of a pure vapor and when nucleation sites are offered,
condensation commences, and if the liquid wets the
surface ideally, thereupon, film condensation occurs on
the flat plate. In order to achieve our ultimate goal of
finding heat transfer results, it is necessary to analyze the
velocity and temperature distributions in the condensate
layer. The flow of condensate depends on the variation
in hydrostatic pressure. The momentum boundary layer
is furthermore subject to a uniform suction which re-
moves the condensate at a constant suction velocity. For
this work, the local volume-averaged conservation
equations are approved. The analysis of film condensa-
tion about a horizontal flat surface in a porous medium
is developed under the following assumptions:

(1) Darcy’s law is applicable to both the dry vapor and
liquid phases in the porous medium.

(2) The condensate is incompressible fluid and the vari-
ations of the properties of porous medium, the dry
vapor and condensate film are neglected.

(3) The viscous dissipation term in energy equation is
neglected, as well as the radiation, chemical reaction,
and electromagnetic effects.

(4) The convective liquid, vapor and the porous me-
dium are in local thermodynamic equilibrium at
every location in the system.

(5) The local film thickness is larger than the pore or
particle size of a porous medium.

(6) The shear stress and surface tension at the liquid—
vapor, liquid-solid, and vapor-solid interfaces are
assumed to be negligible.

(7) The effect of non-condensable gas is insignificant.

(8) The change in momentum flow within the vapor
boundary layer is neglected.

The governing equations with boundary layer sim-
plifications are given as:
continuity equation:
Ou Qv

wte =’ (1)

momentum x-direction:

-(E)(2)

y-direction:
0=—-——-— 3
o P8 3)
energy equation:
or or T

v g 4
uax—i-vay (xrayz 4)

where u and v are the Darcian velocity components in
the x- and y-directions, respectively, K denotes the in-

trinsic permeability of porous medium and the dimen-
sion of K is in square of length (e.g., m?), P is the
pressure of liquid, g is the gravitational acceleration, p is
the density of condensate layer, u. and o are the ef-
fective dynamic viscosity and effective thermal diffusivity
of a porous medium saturated with liquid, respectively.
The Eq. (2) states a linear relationship that is charac-
teristic of the Stokes flow. Noting that the velocity in the
pores is higher than the Darcy velocity by 1/¢, where ¢ is
the porosity (e.g., the volume fraction occupied by
voids). These Eqgs. (1)-(4) are subjected to the following
boundary conditions:
At the flat surface (y = 0):

where T, is always a specified temperature.
At the vapor-liquid interface (y = d(x)):

T=T, P=P (6)

where T; is the saturated temperature of a vapor, P is the
saturated pressure under the temperature 7;, d(x) is the
local condensate layer thickness which is to be deter-
mined.

Now, the static pressure gradient term can be ob-
tained by integrating Eq. (3) with the use of boundary
condition Eq. (6) gives,

P =P, + pg[d(x) — y] (7)

In the meanwhile, substituting Eq. (7) into Eq. (2), one
can solve the x- directional velocity profile can be solved
as follows:

- (2)(2)

In accordance with the first law of thermodynamics,
Fourier’s conduction law and Nusselt theory, these lead
to the governing equations for the energy balance in the
film:

or

d 5(x)
3y = va(hfg + CPAT) + dx {/0 P”[hfg

y=0
L ey(T - 7)) dy} )

where £ is the effective thermal conductivity of the fluid
saturated porous medium, Ay, is the latent heat of con-
densation, and C, is the specific heat of condensate at
constant pressure. It is assumed that v, is a constant
related to both the magnitude direction of the normal
velocity at the plate; v, > 0, suction and v, < 0, injec-
tion, where the direction according to Fig. 1. If the
condensate layer thickness J(x) is relatively small com-
pared with the length of the plate L, the temperature
profile can be considered to be the following form:

T:%AT+R (10)
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where AT is the saturation temperature minus surface
temperature (e.g., AT = T; — T,,). In Eq. (10) obviously
satisfies the energy Eq. (4) and boundary condition Egs.
(5) and (6).

Substituting Egs. (8) and (10) into Eq. (9), the gov-
erning equation can be expressed as

52 5@ _ kﬂef AT
de\ dx/)  \p2gK /) (b +0.5C,AT)

Uy Her (hfg + CPAT)
0 11
* ( pgK ) (htg + 0.5C,AT) (1)

Its corresponding boundary conditions yield

%:0 atx =0 (12)
and
d=0, atx=1L (13)

where J. is the condensate layer thickness at the edge of
flat surface, which is still unknown. One cannot solve
Eq. (11) with its boundary conditions yet. The edge
thickness 0. need not become zero when the system is in
steady state steady flow process. In accordance with a
minimum mechanical energy principle, presented by
Bakhmeteff [18], one would find a new boundary con-
dition to solve Eq. (11). That one has the following
equation:

([ (5] )mar)
o v eyt ) pu
.\, y et Jpudy

where . is the critical value of mass flow out of the
plate edge. The rate of condensate mass flow at any
section x should become as

()
m= / pudy (15)
0

=0 (14)

m=n

And the substitution of Eq. (8) gives as follows:

o (2o

- (Z(-8)
¢ Her ¢ dx
By solving Eq. (14) subject to boundary conditions Egs.

(13) and (17), we can obtain the following relation term:

iy = p’go; (18)

(17)

x=L

Combining Egs. (17) and (18) yields the new boundary

condition:
ds 128\’
-5 = (19)

With an aim of assisting the analysis, these following
transformations are innovated to non-dimensionalize
the preceding equations

x=L

. X 0 _ Oc 5 = L
X_L7 7’_507 ’7;-507 L_507
C PrRe,,
pr=te g O 05,
k Ja 20
p2gPrL} C,AT K (20)
Ra = 2 ) = ] ) Da = T2
.uef 4 L
pv, L B u
Rew ==+ ) ==
Heg VgL

where A = hg 4+ 0.5C,AT, 1, is the relative thickness of
condensate, Pr is the Prandtl number, Ra is the Darcy-
modified Rayleigh number, Ja is the Jakob number, Da
is the Darcy number, Re,, is the Reynolds number which
Re,, > 0 for suction or blowing at the flat surface. The
Jakob number is a measure of the relative degree of
subcooling in the condensate. In terms of the new vari-
ables, the Eq. (19) of boundary condition becomes non-
dimensionalize boundary condition

Pry
=== 21
e Da’Rad; e

The governing Eq. (11) and its boundary conditions Egs.
(12) and (13) can transform to:

dn
dx*

d [/ dy Jas;?
= -1 22
i (ndx*) (DaRa (S —1) (22)
il =0, atx*=0 (23)
n=mn, atx =1 (24)

According with Egs. (8) and (20), the dimensionless
velocity in the x-direction is defined as

vra _ [JaDad; \/2[1 — ()] = Su[1 = n(x*)?]
v = \/—;— ) (25)

Case 1. Let the value of velocity v, of lateral mass flux
on plate surface be zero.

If one neglected the suction effect, then we could set
that S, = 0. Employing a new transformation in Eq.
(22), carrying out integrations and rearranging, we ob-
tain:

eenia-n=( oa; ) (26)

2DaRa

- _ 2]&(323(1 _ ﬂc) (27)
ol DaRan?

where 0 < 7, < 1.
In virtue of boundary condition Eq. (21) has to be
equal to Eq. (27), with some rearrangement one achieves

Pri — 2JaDas;*(1 —n,) =0 (28)

dy
dX*
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Substituting Eq. (24) into Eq. (26), then having used Eq.
(28) to eliminate J;, we obtain the following governing

equation:
6561 [ JaPr?
= e ( )n? (29)

1—n)(24+n)t
(I=n)2+n) 28 \ Da7Ra

At the same time, we set the following equation to check
the existence of 7,:

6561 [ JaPr?
Y(n) =1 —Wr)7(2+’1r)8—m(m)’1? (30)

According to Fourier’s law of heat conduction, the
local heat flux ¢,,(x) to the plate can be computed by the
following equation:

or AT

) =g ks (31)

Hence, in terms of the transformed variables of this
work, the surface dimensionless local heat flux ¢} (x")
can be expressed as

quw(x)L 62

0.0) = = (32

The local Nusselt number Nu, is defined as
Lh, q.,x)L 9]

N, = k kAT :n(x*) (33)

where £, is the local heat transfer coefficient.
The average heat transfer coefficient # over the length
L of the plate would be written as

S ko1
e [ =g [ g
koo

:5_0 Jo n(x)

dx* (34)

The average Nusselt number Nu can be obtained by
integrating the local Nusselt number Nu, Eq. (33) over
the plate surface. This can be defined as

Lh ' &
= = dx* 35
k /o nx*) (33)

In this case, the Nu can be rewritten as
DaRa/ 2DaRa(1 —n,) (36)
2Jad; Jaoy

Case 2. Let the value of suction velocity v, be a con-
stant.

gl

2|

In this case, with Eq. (22) and its appropriate
boundary conditions, we have the following solution
equation (37) and the new boundary condition Eq. (38):

JaSj,é’z3 .
WO
DaRa

n< 1-5, )
1=8un—+/Su(1=0)[2—=8,(1+n)]

/S, (T=)2=S.(1+1)]
(37)
dy _ as?2(1 = n,) = Su(1 = n?)]
de ., _\/ DaRan? (38)

Because the boundary condition Eq. (21) has to be equal
to Eq. (38), we would better take some rearrangements:

Pri} — JaDa6;*[2(1 = n,) = S, (1 = 7)) = 0 (39)

When Egs. (37) and (39) and boundary condition Eq.
(24) are used to eliminate J;, we obtain the following
equation:

V81— )2 =S, (1 +n,)]

n | JaS? Prip? s
DaRa\ JaDa(l —n,)[2 — S, (1 + n,)]

+Ln<l - wrlr \/S 11__ nr)[z SW(I + nr)})

=0
(40)

Otherwise, we set the following equation

\/Sn nr 2 Sw(l + nr)]

N [JaS? Pr} W
DaRa\ JaDa(1 — n,)[2 — S,,(1 +1,)]

+Ln( S = /S0 = )2~ S(1+n,>]>

1 _Sw
(41)

In terms of Eq. (35), the average Nusselt number Nu in
the Case 2 will be expressed as

B /DaRaéo /

JaL \/2 1—#)
_ DaRa
o Ja$,,0;

1 - Swrlc

Su(l—n?)

— /S, 2(1=n.) = S, (T —n2)]

L
X 1—s,

(42)

3. Results and discussion

In Case 1, from the Eq. (29), we set the Eq. (30)
which to plot the Fig. 2 and to check the existence of
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0.1

g;xjazo.l, Pr=1, Da=1.0, Sw=0.0

0.05 ]

-0.05 +

-0.1

0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92
X

Fig. 2. In Case 1, variation of n, =X at different values of
Rayleigh numbers Ra for Ja = 0.1, Pr=1,Da =1, and S,, = 0.

0.1
—— Sw=0.05

011 v Da=0.2, Ja=0.1, Pr=1.0, Ra=10.
—O0— Sw=0.1

0.1 + —x— Sw=0.2

0.0 ——Sw=0.3

" 0.66 0.67 0.68 0.69 0.70 0.71 0.72
X

Fig. 3. In Case 2, variation of n, =X at different values of
suction parameters S, for Ja=0.1, Pr=1, Da=0.2, and
Ra = 10.

solutions. Fig. 2 shows that the solution values of rela-
tive thickness 7, (=X) increase with Rayleigh number
Ra and are reflected the physical problem that have a
unique solution for specifying parameters. In a mean-
while, in Case 2, it is essential to know that there is at
most one solution in Eq. (40) or not for specifying pa-
rameters. Therefore, we would use the Eq. (41) to plot
Fig. 3. With respect to Fig. 3 it is seen that the solution
1, (=X) of Eq. (41) exists only one for logical conditions
and has 0.68<#,<0.72 for various S,, when given
Ja=0.1, Pr=1.0, Ra = 10, and Da = 0.2. In addition,
we can find that, these values of solution increase with
suction parameter S,,.

Numerical solution in this problem is obtained by
using the Newton-Raphson scheme. For Cases 1 and 2,

the value of initial estimate 7, = 0.9999 and the relative
absolute change |(n,),.; — (1:),1/1(n,),| <1078 are used
to any specified parameters. It is pertinent to note that
S,, = 0 corresponds to considering an impermeable plate
without suction. Here the Prandtl number varies from
very little vales for liquid metals to very large values for
ordinary liquids and oils is considered. When the Darcy
number Da = 0.2, the Jakob number Ja = 0.01, and the
suction parameter S,, = 0.1 are selected, the values of 7,
and 1/9; for various values of Prandtl number Pr, and
Darcy-modified Rayleigh number Ra are shown in Ta-
bles 1 and 2, respectively. It can be seen that the value of
1, decreases as Pr increases and 7, increases with Ra on
account of the lower effective viscosity. Besides, the
central condensate thickness of horizontal plate de-
creases as Pr increases, and also 1/0; decreases as Ra
increases. The smaller value of 1/0; manifests the central
condensate film thickness J, of the plate length L is very
thin, where L is a large-scale characteristic length. The
higher value of 5, discloses the condensate layer thick-
ness variations are very small for higher Ra. As far as
Fig. 4 is concerned, it is clear that the variation of J/d,
(=n) with x* is more significant with decreasing Ra, i.e.
the high variation of curvature of condensate profile is
due to increasing the effective viscosity. The higher ef-
fective viscosity leads to the liquid velocities which are
extremely small. It also should be made known that the
variation of condensate profile # shows insignificant
those effects of suction for Ra > 100.

The heat transfer results thus obtained are exhibited
on Figs. 5-9. Fig. 5 shows the effects of the suction Sw
on the local Nusselt number Nu, for Da = 0.2, Ja = 0.01,
and Pr=0.1. From the Fig. 5, it can be seen that Nu,
increases with x*, Ra and Sw. It also should be pointed
out that the variation of Nu, between Sw = 0.5 and
Sw =0 for Ra =100 shows more significant than for
Ra = 1. In other word, the effect of suction for higher
Darcy-modified Rayleigh number is superior to for
lower Ra.

Fig. 6 shows the average Nusselt number Nu ex-
pressed in terms of Rayleigh number Ra for Da = 0.2
and Pr = 0.1, when the effect of suction does exist or not.
This indicates that at a fixed Ra with a given Sw, the
value of Nu for low Ja by contrast with the value of Nu
for high Ja is effective, i.e. the suction effectiveness is
more significant for little thermal resistance across
condensate layer (C,AT/h¢, < 1). On the other hand
from Fig. 6, it is seen that the variation of Nu for low
Rayleigh number liquids does exist much larger than for
high Rayleigh number liquids, i.e. when in the range of
0 < Ra< 1000 the liquid velocities are all little on the
ground of the high effective local drag force.

In Fig. 7, the solid lines represent the theoretical
predictions of the average Nusselt Nu when the effect of
suction is not considered. This illustrates the role of the
thermal resistance across condensate layer (i.e. Ja) on
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Table 1
Values of . when Ja = 0.01, Da = 0.2, S,, = 0.1 for Case 2

e = 0c/do Ja=0.01,Da=0.2,85,=0.1
Pr=10 Pr=>5 Pr=1 Pr=20.5 Pr=0.1
Ra=1 0.241348 0.293428 0.441077 0.512293 0.674653
Ra =10 0.520031 0.591759 0.742401 0.795264 0.886056
Ra =100 0.800435 0.843955 0.915434 0.935856 0.966829
Ra = 500 0.91006 0.931687 0.964602 0.973475 0.986528
Ra = 1000 0.937751 0.953047 0.97592 0.982006 0.990897
Ra = 2000 0.957297 0.967945 0.983677 0.987825 0.993857
Ra = 5000 0.974288 0.980778 0.99027 0.992754 0.996353
Ra = 10000 0.982561 0.986989 0.993433 0.995113 0.997543
Table 2
Values of dy/L when Ja = 0.01, Da = 0.2, S,, = 0.1 for Case 2
do/L Ja=001,Da=0285,=0.1
Pr=10 Pr=>5 Pr=1 Pr=20.5 Pr=0.1
Ra=1 0.377212 0.380343 0.394319 0.404703 0.443912
Ra =10 0.188458 0.195159 0.218965 0.233333 0.277548
Ra =100 0.109094 0.117177 0.141307 0.154206 0.190744
Ra = 500 0.081059 0.088393 0.109213 0.119995 0.149945
Ra = 1000 0.072263 0.079104 0.098305 0.108178 0.135489
Ra = 2000 0.064738 0.071058 0.088662 0.097671 0.122521
Ra = 5000 0.056267 0.061904 0.077507 0.085461 0.107344
Ra = 10000 0.050733 0.05588 0.070081 0.077306 0.097162
1.2 7
Ra=100 o _ Da=0.2, Ja=0.01, Pr=0.1
Da=0.2, Ja=0.01, Pr=0.1 / Ra=1000 e !
61
1
5 I
08}
41
S o6} . Sw=0.5 Nuy
80 34
— Sw=0.0
044
2 I
Ra=1
02l -—Sw=0.5
=== Sw=0.1
LT —sw=00
0 ;
0 0.2 0.4 0.6 0.8 1 0 y
0 0.2 0.4 0.6 0.8 1
X*
X*

Fig. 4. Results for Da = 0.2, Ja = 0.01, and Pr = 0.1: dimen-
sionless film profiles at different values of suction parameters S,,
and Rayleigh number Ra.

the effects of dimensionless average heat flux Nu. It can
be seen that Nu variations and suction effects increase as
the Jakob number decreases for Ra = 1000 and
Da = 0.2. In addition, we can find that increasing values
of the Ja there are decreasing deviations form linearity.
Accordingly, it is concludes that both increasing suction

Fig. 5. Results for Da = 0.2, Ja = 0.01, and Pr = 0.1: the local
Nusselt number Nu, at different values of suction parameters S,
and Rayleigh number Ra.

effect and decreasing thermal resistance have better ef-
fects on the heat transfer rate.

In Fig. 8, it is seen that the values of Nu increases
with Pr at different values of suction parameter S, and
Jakob number Ja for Da = 1.0 and Ra = 5000. It is can
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Ja=0.01: Da=0.2, Pr=0.1

.Y

0 2000 4000 6000 8000 10000
Ra

Fig. 6. Variation of Nusselt number Nu with Rayleigh number
Ra at different values of Jakob number Ja and suction para-
meter S,, for Pr =0.1, and Da = 0.2.

| Ra=1000.0, Da=0.2

0 02 04 0.6 0.8 1 12
Ja

Fig. 7. Variation of Nusselt number Nu with Jakob number Ja
at different values of Prandtl number Pr and suction parameter
S,, for Ra = 1000, and Da = 0.2.

be observed form Fig. 9 that the values of Nu increases
with Da, and Nu variations are almost no difference as
Da > 0.5 at different values of suction parameter S,, and
Rayleigh number Ra for Ja = 0.2 and Pr = 1. Base on
these Figs. 6-8, we can find the scales for Nu are

Nu ~ Ra"’ (43)
Nu~ PrY/7 (44)
Nu ~ Ja " (45)

As a result, all the Nu can be plotted as a functional
relation in the form

Nu= f(Ja ", PV Ra'7, Sw) (46)

18

Da=1.0, Ra=5000

==°Sw=0.5
— Sw=0.0

Fig. 8. Variation of Nusselt number Nu with Prandtl number Pr
at different values of suction parameter S, and Jakob number
Ja for Da = 1.0 and Ra = 5000.

Ra=1000
...oooo---o----o—---O----O----O--‘-0----0----1

N Ra=100

Ja=0.2, Pr=1.0

2 -=-=--Sw=0.3
—— Sw=0.0
1
0+ + + +
0 0.5 1 1.5 2

Da

Fig. 9. Variation of Nusselt number Nu with Darcy number Da
at different values of suction parameter S,, and Rayleigh num-
ber Ra for Ja=0.2 and Pr=1.

According to the curve fitting method and a functional
relation Eq. (46), we can precisely predict the value of Nu
for various suction parameters S,, in the criterion
Ra > 1000, Da > 0.5:

o PF1/7R 1/7

Nu = CTZ;: (47)
where C=1.0 for S,=0.0, C=1.03 for S, =0.1,
C=1.066 for S,=02  C=1.107 for S,=0.3,
C=1.155 for S,, =04, and C = 1.216 for S,, = 0.5. It
implies that these constants of C already include an ef-
fect of the intrinsic permeability of a porous medium.
The value of the group parameter Nu/(Pr'/"Ra'"Ja=2/7)
with S, for Ra = 1000, Da > 0.5 is shown in Fig. 10. It
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Fig. 10. The variation of suction effect Nu/(Pr'/"Ra'7Ja=?")
with S, for Ra > 1000, Da > 0.5.

can be seen that the suction effect for heat transfer rate
increases with suction parameter S,,.

4. Conclusions

This analysis performed, provides a fundamental
understanding of a two-dimensional, finite-size, hori-
zontal, permeable flat plate imbedded in a saturated
porous medium. The criterion for the convergence of
the solutions is that the relative absolute change
[(10)01 — (1),1/1(n,),,| < 1078 is satisfied, otherwise, the
solutions are very difficult to obtain for high Rayleigh
number Ra with high Darcy number Da cases. The re-
sults indicate that the condensate thickness J, at the
plate center decreases as the suction parameter S, in-
creases. If we include the surface tension effects, the
center thickness J, at the plate center and the critical
thickness J. at the plate edge will become larger. The
Darcy number shows insignificant the effects of heat
transfer for Ra > 1000 and Da > 0.5, thus, we can use
the Nusselt correlation Eq. (47) to predict the average
heat transfer coefficient in the form

1/7
i ok Pl 2kt 1) :
L| 4(u;CoAT)

for Ra > 1000 and Da > 0.5

where C=1.0 for §,=0.0, C=1.03 for S, =0.1,
C=1.066 for S,=02  C=1.107 for S, =0.3,
C =1.155 for S,, = 0.4, and C = 1.216 for S,, = 0.5.
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